160 Factors and Factorials

The factorial of a number N (written $N!$) is defined as the product of all the integers from 1 to N. It is often defined recursively as follows:

$$
\begin{gathered}
1!=1 \\
N!=N *(N-1)!
\end{gathered}
$$

Factorials grow very rapidly $-5!=120,10!=3,628,800$. One way of specifying such large numbers is by specifying the number of times each prime number occurs in it, thus 825 could be specified as $(0$ 1201 meaning no twos, 1 three, 2 fives, no sevens and 1 eleven.

Write a program that will read in a number $N(2 \leq N \leq 100)$ and write out its factorial in terms of the numbers of the primes it contains.

Input

Input will consist of a series of lines, each line containing a single integer N. The file will be terminated by a line consisting of a single ' 0 '.

Output

Output will consist of a series of blocks of lines, one block for each line of the input. Each block will start with the number N , right justified in a field of width 3, and the characters '!', space, and ' $=$ '. This will be followed by a list of the number of times each prime number occurs in N !.

These should be right justified in fields of width 3 and each line (except the last of a block, which may be shorter) should contain fifteen numbers. Any lines after the first should be indented.

Follow the layout of the example shown below exactly.

Sample Input

5
53
0

Sample Output

```
    5! = 3 1 1
    53! = 49 23 12 
    1
```

